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Critical nature of ideal Bose-Einstein condensation: Similarity with Yang-Lee theory
of phase transition
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It is found that the singularity of the thermodynamic potential of an ideal Bose gas is connected with the
physical rootzy= 1 of the inverse of the grand partition function. The critical nature is determined solely by the
behavior of the root distribution of the inverse of the grand partition function ngafl.. This is quite similar
to the situation of phase transition described by Yang-Lee théS4063-651X99)12801-0
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In 1924 Einstein 1] generalized Bose’s novel derivation per we use the system of unkg=h=1. The chemical po-
of Planck’s blackbody radiation law and proposed the Bosetential <0 is required in order to have the positive
Einstein statistics. He calculated the thermodynamic properdefiniteness of particle distribution. Far>T,., u<0 and
ties of an ideal Bose gas and found that below the criticaN(e=0)=0; for T=T.,, u=0 and N(e=0)=0; for
temperature, particles begin to condense in the lowest energy<T., u=0 andN(e=0)#0. The critical temperature is
level and the gas undergoes a phase transition, known aefined by
Bose-Einstein condensatioEC). In 1938, London[2]
used BEC to explain the superfluidity of liquid helium. Pen- . 1
rose and Onsagdi3] proposed a generalized criterion of N=B(d f —r——0g(e)de. 3
BEC. Yang[4] further extended this criterion to superfluid (@ 0 €° Tc_lg( ) ®
and superconductivity and proposed the concept of off-
diagonal long-range order. For many years, ideal BEC wagssyme that near the ground state, the energy spectrum has
regarded as a mathematical artifact. Fortunately, in recenjq propertye(p) —ap* asp—0 (\ is a positive exponet
years, nearly ideal BEC have been observed in experimentg, s the quantum state distribution function has the property
[5]. These experimental works greatly stimulated theoretlcab(e)qed/x—l ase—0. Itis easy to verify that ifi/\>1, the

studies. o __integrand in Eq(3) is convergent and is finite. Letd/\
Ideal BEC was studied in some respects, such as in any y = , \we show that the critical nature of ideal BEC is

dimension{6-9], in critical nature as an ordinary phase tran- yetarmined solely by the behavior of the quantum state dis-

sition [10]. A similarity with the spherical model was estab- ih tion function near the ground state. The following states
lished[10]. Furthermore, ideal BEC in relativistic ideal Bose this more clearly.

gas was studieffl1]. . Theorem For an ideal Bose gas, if the quantum state dis-
In this paper, we shall show that similar to the nature of.iy, tion has the behaviog(e)— e* as e—0 and « is a
phase transitions described by Yang-Lee theory, the C_”t'cfositive exponent, the gas will undergo a phase transition at
nature of ideal BEC is determined solely by the behavior Offite temperature. In this case, the nature of the phase tran-
the root distribution of the inverse of the grand partition sition is determined completely hy: 1. If >1, the phase

function near the physical roap=1. transition is second order, with a finite jump @, . 2. If
In dimensiond, for an ideal Bose gas, the number of 1/2<a<1, C, is continuous, with infinite jump in

particles and the energy of the gas are given, respectively, b@'&CV/aT)TC and (ICy /dT)r+ = —o. 3. If a=1/2,Cy is con-

tinuous, with a finite jump indCy/dT)r.. 4. If 0<a<1/2,

3 . @if a=1/(n+1) (n=2,3,...), ¢" 'Cy/dT" *)¢ is con-

+B(d)f Wpdfldp tinuous, with a finite jump in &”CV/&T”)TC; (b) if 1/(n

o€ 1 +2)<a<l/(n+1) (n=12,...), ¢"Cy/aT")_is con-

- 1 tinuous, with an infinite jump in A"*1C,/dT"*1); and
:N(E:O)-FB(d)fo mg(f)df, (D) (¢9n+lCV/(9Tn+1)T+=OO. ¢

Proof. Define t%e following functions:

N=N(e=0)+N(e#0)=N(e=0)

*© €
E(T)=|3(O|)fo e(e-,LT_lg(f)Olf, i) 1
NO(T):B(d)fO mg(f)df, (4)
where B(d)=2V#¥%T'(d/2) and g(e)=p® *(dp/de) is
the distribution function of quantum stateN(e=0) and

N(e#0) are the number of particles distributed on the en- E.(T)=B(d fx € de. 5
ergy levelse=0 ande+ 0, respectively. Throughout this pa- o(T)=B(d) 0 eET—lg(e) € ©
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Their physical meanings are that for<T., No(T)=N(e
#0) andEy(T)=E(T). ConsiderT>T,:

1
eE/T_ 1 - e(f_M)IT_ 1 g(E)df

Ndﬂ—N=mdd:

=B(d)(e #'T-1)
e/T

[ee w)IT _ 1](ee/T 1)

g(e)de
=B(d)(e “T=1)I1(u,T). (6)
Let us split up the integranid (u, T) into two parts. The first
part (1{Y) is integrated from O tas,. We choosee, and u
such thatg(e)=(ra¥*) "1e® for e<ey and — u<eg<T.
Thus for O<a<1,

© 1
|<l>:bf ° ;
! o (e—u)e

oy@—1
| |a-1f X dx
K o 1+x

=[ba/sin(am)]ul*,

“de

@)

whereb=T2a"¥*\ "1, x=¢/| u| and we take the integration
upper limit eo/| 1| as infinity. Fora=1,

|<1>=be° L de=b(In eg—Inl ) ®)
1 0 €— M 0
For a>1, 1,(u—0,T) is convergent. Thus
1,(0T), a>1,
l{(p—0,T)— —-bIn(—w), a=1, (9

by(—p)®t 0<a<l,

whereb; = bx/sin(aw). On the other hand, using E®), we
find that asT—T/ ,

1
elTe 1

® 1
NO(T)_NZB(d)fO (ee/T_l_ )g(E)dE

e

ee/T
)J(GEITC_ )(ee/T 1)g(€)d6

(10

(d)(
=[B(d)I(T)/T]t,

wheret=(T—T.)/T.. It is easy to show thalt,(T) is con-
vergent and analytic iv>0. Therefore identifying Eq(6)
with (10) and using Eq(9), we obtain, in the limifT—T_ ,

[I,(T)/14(0,T)]t, a>1,

—u=1 —[(T)/bltlIn(=w)]
bote,  0<a<1,

a=1,

11

whereb,=[1,(T)sin(am)/mb]Y®. Since asT— T, ,
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1
wWIT_ 1

® 1
EO(T)_E(T):B(d)L (ee/T_l_ o €g(e)de

=B(d)(e #T-1)

o ee/T
X fo [ AT 17— 1) g(e)de
=B(d)(e #T—1)I5(u,T)

~B(d)I3(0,T)(—w/T), as u—0 (12
where the integrants(0,T) is convergent and analytic. Sub-

stituting Eqg.(12) into Eq. (12) yields

Eo(T)—fy(T)t, a>1,

E(T)={ Eo(M+fa(DtlIn(-=p)]" Y, a=1, (13
Eo(T)—fa(TtYe, 0<a<i,

where f1(T)=B(d)I(T)15(0,T)/T1,(0,T), f,(T)

=B(d)I,(T)I5(0T)/Tb, and fs(T)=B(d)I4(0T)b,/T.
SinceCy=[JE(T)/dT], asT—T,_

( JEL(T
of )+const, a>1,
JEq(T) —1
Cu(T) =4 o7 Teonsk[in(—w)]7%,  e=1, (14
JE(T
of )+const><t’l+1/", 0<a<l.
\ JT

Since forT<T,, E(T)=Ey(T), it is easy to find the dif-
ference ofdC,, /9T or higher order derivatives on both sides
of the critical point. Fora=1, althoughC,, is continuous at
Te, (é!CV/aT)TC is not continuous,

dCy F?Eq(T) -
(W)T+_ T +eons [ u(In(—p))*] " —e.
C (15
For O<a<1/2, (8 if a=1/(n+1) (n=2,3,...),thus as
T-T.,
IEQ(T)
Cy(T)= +constx t". (16)
aT
(b) If U/(n+2)<a<l/(n+1) (n=1,2,...),thus asT
—>T;r,
IEo(T)
Cy(T)= 0T +constXt”™ (n<r<n+1). (17

This completes the proof.

This theorem generalizes the result derived by de Groot,
Hooyman, and ten Seldaf8].

In 1952 Yang and Le¢l2] proposed a phase transition
theory. They observed that for a real interacting gas, the pair
interaction has hard core. For a given volumgethe maxi-
mum numberM of particles that can be crammed into the
volume is limited by the size of the hard core, i.&/,
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~V/a®. Herea is the radius of the hard core. Thus the grand ~For an ideal Bose gas, since no hard core exists, the grand
partition function can be expressed as a polynomial of fugacPartition function is an infinite power series of fugacity and
ity z=exp(/T), can not be expressed as a polynomial of fugacity. So we can
not introduce the roots of the grand partition function. Nev-
ertheless, the inverse of the grand partition function can be
), (18)  expressed as

M M 7
E=2 2'Q./n!=]] (1——
n=0

=1 Z
. . . . ﬁ*lzn 1_; (21)
whereQ,>0 is the partition function of the system with = y expe/T))’
particles in the volumé/. The rootsz, are never positive
real. The root distribution can touch the positive real aXiSWhere the product is taken over each guantum $tasimi-

only in the thermodynamic limit and give the transition jar to the Yang-Lee approach, we can introduce the roots of
point. The singularity of the thermodynamic potential isz -1,

connected with the positive real root. They took the lattice

gas model as an example and found that the nature of the zi=exp(e/T). (22
phase transition is determined solely by the behavior of the

root distribution near the positive real root. In this examplelt is seen that the root distribution is determined by the en-
the roots are located on an unit circle in the complexergy spectrum. Since

y=exp{u—(1/2)¢]/T} plane (Yang-Lee circle theorejm

namely,y,=exp(6) [13]. Here ¢==;.ju(rj;) is the po- —Inz=2 In(l— z )
tential energy among any atorn and other atoms and - exp e /T)
u(ri;) <0 the attractive pair potential energy. Thus the pres-
sure is given by * z
—>B(d)j0 g(e)ln(l exp(e/T))de’ (23
T T y
P=yIn== VZ In( 1- E) we identify the root distribution function with the quantum

state distribution functioy(e)=p%~(dp/de).

Since physicallyu<0 and ¢,=0, soz<1 andz=1.
When u=0, =0, we have the unique physical roat
=Zz,=1, which corresponds to the singularity of the grand

where g(6) is the root distribution functiong=0 corre- Partition function & =) and the thermodynamic potential.
sponds to the positive real rogt=1. When6—0, if g(¢) ~ From theorem 1 we know thatgf(e) —€* ase—0, then the
—g(0)+b|6|"+--- (»>0), Yang and Lee showed that the critical nature of ideal BEC is determined completely day
g(0) term gives a flat horizontal portion on theV dia- Therefore the crltlcal_ ne_lture_: of ideal BEC is determined
gram. Letm—1<n<m (m is a positive integdr The next solely by the root distribution neary=1, namely, g(e

term gives a jump in thenth derivative ofV with respect to —0)—e. We obtain the following conclusion_.
P. For an ideal Bose gas, the roots of the inverse of the

In 1964 Fishef14] observed that for some kinds of lattice 9"and partition function are given by, z exp(e/T). The sin-

models, the partition function can be expressed as a polyndlUlarity of thermodynamic potential is connected with the
mial. He discussed the roots of the partition function in thePhysical root 522:]&' If the root distribution function has
complex temperature plane. He used the square lattice Isirlge behawqr.ge)_)e (a_ Is a positive exponent) as—0,
model as an example and also found that the critical nature {$1€n the critical nature is determined completely dyin

determined solely by the behavior of root distribution nearPther words, the critical nature of ideal BEC is determined

the positive real root. In this example the roots are located ofi°/€ly Py the behavior of the root distribution near the physi-

an unit circle in the complex=sinh 2/T plane, namely, ca rootz=1. .~ o
x;=exp(4). Then the free energy is The situation is quite similar to that of phase transitions

described by Yang-Lee theory. It is interesting to note that
this physical rootzy=1 can occur in a finite system, while

=Tfowg(0)ln(y2—2y cosf+1)dé, (19

f=T>, In( 1— i) - fﬁg(g)m(XZ_ 2x cosf+1)dé. the positive real root in the Yang-Lee approach occurs in the
I X| 0 thermodynamic limit.
(20) We further discuss the difference between ideal BEC and

nonideal BEC. The origin of singularity of thermodynamic
Fisher proved that the root distributig{#) —|6| near6=0  potential of an ideal Bose gas is quite different from that of
gives the logarithmic singularity of the two-dimensional a real interacting Bose gas. For a real interacting Bose gas,
Ising model. For theg-state Potts mode[15,16, it was  the pair interaction has a hard core and Yang-Lee theory is
found that in the complex=(e”T—1)/1/q plane, the roots applicable. The singularity of the thermodynamic potential is
in the Rex>0 region are located on the unit cirdlef=1.  connected with the positive real root of the grand partition
As 0—0, g(6)—|6|* *@ for g<4, which gives the spe- function. On the contrary, for ideal Bose gas, the singularity
cific heat singularityft| - (second-order phase transitjpn  of the thermodynamic potential is connected with the physi-
and g(#)—f(q) for >4, which gives a first order phase cal rootzy=z=1 of the inverse of the grand partition func-
transition with latent heat(q). tion.
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From the above, we further see the followir{@) Ideal long ago by Huang, Yang, and Luttingftr9,20.
BEC can occur in a finite systefd7]. This explains why a In conclusion, we have found that the singularity of
nearly ideal Bose atom cluster in some experimé¢hbi$8],  thermodynamic potential of an ideal Bose gas is connected
only with number of particles, say 10that is far from with the physical rootzy=z=1 of the inverse of the
reaching the thermodynamic limit, still has ideal BEC. While grand partition function. The critical nature of ideal Bose-
for a real interacting Bose gas, nonideal BEC can occuEinstein condensation is determined solely by the be-
only in the thermodynamic limit{2) Both singularities of havior of the root distribution of the inverse of the
thermodynamic potentials of a real interacting Bose gagrand partition function near the physical ragt=1. The
and a real interacting classical gas are connected witkituation is quite similar to that of phase transition described
the positive real roots of their grand partition functions, by Yang-Lee theory, where the nature of the phase transi-
respectively. Therefore this explains why BEC of a realtion is determined solely by the behavior of the root distri-
interacting Bose gas more closely resembles an ordinarpution of the grand partition function near the positive
gas-liquid phase transition than the ideal BEC, as notedeal root.
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