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Critical nature of ideal Bose-Einstein condensation: Similarity with Yang-Lee theory
of phase transition

Xian-Zhi Wang and Jai Sam Kim
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

~Received 13 July 1998!

It is found that the singularity of the thermodynamic potential of an ideal Bose gas is connected with the
physical rootz051 of the inverse of the grand partition function. The critical nature is determined solely by the
behavior of the root distribution of the inverse of the grand partition function nearz051. This is quite similar
to the situation of phase transition described by Yang-Lee theory.@S1063-651X~99!12801-0#

PACS number~s!: 05.30.Jp, 03.75.Fi, 05.50.1q, 64.60.Fr
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In 1924 Einstein@1# generalized Bose’s novel derivatio
of Planck’s blackbody radiation law and proposed the Bo
Einstein statistics. He calculated the thermodynamic prop
ties of an ideal Bose gas and found that below the crit
temperature, particles begin to condense in the lowest en
level and the gas undergoes a phase transition, know
Bose-Einstein condensation~BEC!. In 1938, London@2#
used BEC to explain the superfluidity of liquid helium. Pe
rose and Onsager@3# proposed a generalized criterion
BEC. Yang@4# further extended this criterion to superflu
and superconductivity and proposed the concept of
diagonal long-range order. For many years, ideal BEC w
regarded as a mathematical artifact. Fortunately, in rec
years, nearly ideal BEC have been observed in experim
@5#. These experimental works greatly stimulated theoret
studies.

Ideal BEC was studied in some respects, such as in
dimension@6–9#, in critical nature as an ordinary phase tra
sition @10#. A similarity with the spherical model was esta
lished@10#. Furthermore, ideal BEC in relativistic ideal Bos
gas was studied@11#.

In this paper, we shall show that similar to the nature
phase transitions described by Yang-Lee theory, the crit
nature of ideal BEC is determined solely by the behavior
the root distribution of the inverse of the grand partiti
function near the physical rootz051.

In dimensiond, for an ideal Bose gas, the number
particles and the energy of the gas are given, respectively

N5N~e50!1N~eÞ0!5N~e50!

1B~d!E
0

` 1

e~e2m!/T21
pd21dp

5N~e50!1B~d!E
0

` 1

e~e2m!/T21
g~e!de, ~1!

E~T!5B~d!E
0

` e

e~e2m!/T21
g~e!de, ~2!

where B(d)52Vpd/2/G(d/2) and g(e)5pd21(dp/de) is
the distribution function of quantum states.N(e50) and
N(eÞ0) are the number of particles distributed on the e
ergy levelse50 andeÞ0, respectively. Throughout this pa
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per we use the system of unitskB5h51. The chemical po-
tential m<0 is required in order to have the positiv
definiteness of particle distribution. ForT.Tc , m,0 and
N(e50)50; for T5Tc , m50 and N(e50)50; for
T,Tc , m50 and N(e50)Þ0. The critical temperature is
defined by

N5B~d!E
0

` 1

ee/Tc21
g~e!de. ~3!

Assume that near the ground state, the energy spectrum
the propertye(p)→apl asp→0 ~l is a positive exponent!.
Thus the quantum state distribution function has the prop
g(e)→ed/l21 ase→0. It is easy to verify that ifd/l.1, the
integrand in Eq.~3! is convergent andTc is finite. Let d/l
215a. We show that the critical nature of ideal BEC
determined solely by the behavior of the quantum state
tribution function near the ground state. The following sta
this more clearly.

Theorem. For an ideal Bose gas, if the quantum state d
tribution has the behaviorg(e)→ea as e→0 and a is a
positive exponent, the gas will undergo a phase transitio
finite temperature. In this case, the nature of the phase t
sition is determined completely bya : 1. If a.1, the phase
transition is second order, with a finite jump inCV . 2. If
1/2,a<1, CV is continuous, with infinite jump in
(]CV /]T)Tc

and (]CV /]T)T
c
152`. 3. If a51/2,CV is con-

tinuous, with a finite jump in (]CV /]T)Tc
. 4. If 0,a,1/2,

~a! if a51/(n11) (n52,3, . . . ), (]n21CV /]Tn21)Tc
is con-

tinuous, with a finite jump in (]nCV /]Tn)Tc
; ~b! if 1/(n

12),a,1/(n11) (n51,2, . . . ), (]nCV /]Tn)Tc
is con-

tinuous, with an infinite jump in (]n11CV /]Tn11)Tc
and

(]n11CV /]Tn11)T
c
15`.

Proof. Define the following functions:

N0~T!5B~d!E
0

` 1

ee/T21
g~e!de, ~4!

E0~T!5B~d!E
0

` e

ee/T21
g~e!de. ~5!
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Their physical meanings are that forT,Tc , N0(T)5N(e
Þ0) andE0(T)5E(T). ConsiderT.Tc :

N0~T!2N5B~d!E
0

`F 1

ee/T21
2

1

e~e2m!/T21Gg~e!de

5B~d!~e2m/T21!

3E
0

` ee/T

@e~e2m!/T21#~ee/T21!
g~e!de

[B~d!~e2m/T21!I 1~m,T!. ~6!

Let us split up the integrandI 1(m,T) into two parts. The first
part (I 1

(1)) is integrated from 0 toe0. We choosee0 and m
such thatg(e)5(lad/l)21ea for e<e0 and 2m!e0!T.
Thus for 0,a,1,

I 1
~1!5bE

0

e0 1

~e2m!e
eade

5bumua21E
0

`xa21

11x
dx

5@bp/sin~ap!#umua21, ~7!

whereb5T2a2d/ll21, x5e/umu and we take the integratio
upper limit e0 /umu as infinity. Fora51,

I 1
~1!5bE

0

e0 1

e2m
de5b~ ln e02 lnumu! ~8!

For a.1, I 1(m→0,T) is convergent. Thus

I 1~m→0,T!→H I 1~0,T!, a.1,

2b ln~2m!, a51,

b1~2m!a21, 0,a,1,

~9!

whereb15bp/sin(ap). On the other hand, using Eq.~3!, we
find that asT→Tc

1 ,

N0~T!2N5B~d!E
0

`S 1

ee/T21
2

1

ee/Tc21Dg~e!de

'B~d!S 1

Tc
2

1

TD E
0

` eee/T

~ee/Tc21!~ee/T21!
g~e!de

[@B~d!I 2~T!/T#t, ~10!

wheret5(T2Tc)/Tc . It is easy to show thatI 2(T) is con-
vergent and analytic ifa.0. Therefore identifying Eq.~6!
with ~10! and using Eq.~9!, we obtain, in the limitT→Tc

1 ,

2m5H @ I 2~T!/I 1~0,T!# t, a.1,

2@ I 2~T!/b#t@ ln~2m!#21, a51,

b2t1/a, 0,a,1,

~11!

whereb25@ I 2(T)sin(ap)/pb#1/a. Since asT→Tc
1 ,
E0~T!2E~T!5B~d!E
0

`S 1

ee/T21
2

1

e~e2m!/T21D eg~e!de

5B~d!~e2m/T21!

3E
0

` eee/T

@e~e2m!/T21#~ee/T21!
g~e!de

[B~d!~e2m/T21!I 3~m,T!

'B~d!I 3~0,T!~2m/T!, as m→0 ~12!

where the integrandI 3(0,T) is convergent and analytic. Sub
stituting Eq.~11! into Eq. ~12! yields

E~T!5H E0~T!2 f 1~T!t, a.1,

E0~T!1 f 2~T!t@ ln~2m!#21, a51,

E0~T!2 f 3~T!t1/a, 0,a,1,

~13!

where f 1(T)5B(d)I 2(T)I 3(0,T)/TI1(0,T), f 2(T)
5B(d)I 2(T)I 3(0,T)/Tb, and f 3(T)5B(d)I 3(0,T)b2 /T.
SinceCV5@]E(T)/]T#, asT→Tc

1 ,

CV~T!55
]E0~T!

]T
1const, a.1,

]E0~T!

]T
1const3@ ln~2m!#21, a51,

]E0~T!

]T
1const3t2111/a, 0,a,1.

~14!

Since forT,Tc , E(T)5E0(T), it is easy to find the dif-
ference of]CV /]T or higher order derivatives on both side
of the critical point. Fora51, althoughCV is continuous at
Tc , (]CV /]T)Tc

is not continuous,

S ]CV

]T D
T

c
1

5F]2E0~T!

]T2 G
Tc

1const3@m„ln~2m!…3#21→`.

~15!

For 0,a,1/2, ~a! if a51/(n11) (n52,3, . . . ), thus as
T→Tc

1 ,

CV~T!5
]E0~T!

]T
1const3tn. ~16!

~b! If 1/(n12),a,1/(n11) (n51,2, . . . ), thus as T
→Tc

1 ,

CV~T!5
]E0~T!

]T
1const3tt ~n,t,n11!. ~17!

This completes the proof.
This theorem generalizes the result derived by de Gro

Hooyman, and ten Seldam@6#.
In 1952 Yang and Lee@12# proposed a phase transitio

theory. They observed that for a real interacting gas, the
interaction has hard core. For a given volumeV, the maxi-
mum numberM of particles that can be crammed into th
volume is limited by the size of the hard core, i.e.,M
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;V/a3. Herea is the radius of the hard core. Thus the gra
partition function can be expressed as a polynomial of fug
ity z5exp(m/T),

J5 (
n50

M

znQn /n! 5)
l 51

M S 12
z

zl
D , ~18!

whereQn.0 is the partition function of the system withn
particles in the volumeV. The rootszl are never positive
real. The root distribution can touch the positive real a
only in the thermodynamic limit and give the transitio
point. The singularity of the thermodynamic potential
connected with the positive real root. They took the latt
gas model as an example and found that the nature of
phase transition is determined solely by the behavior of
root distribution near the positive real root. In this examp
the roots are located on an unit circle in the comp
y5exp$m2(1/2)f#/T} plane ~Yang-Lee circle theorem!,
namely,yl5exp(iul) @13#. Here f5( j (Þ i )u(r i j ) is the po-
tential energy among any atomi and other atoms and
u(r i j ),0 the attractive pair potential energy. Thus the pr
sure is given by

P5
T

V
ln J5

T

V(
l

lnS 12
y

yl
D

5TE
0

p

g~u!ln~y222y cosu11!du, ~19!

where g(u) is the root distribution function.u50 corre-
sponds to the positive real rootyl51. Whenu→0, if g(u)
→g(0)1buuun1••• (n.0), Yang and Lee showed that th
g(0) term gives a flat horizontal portion on theP-V dia-
gram. Letm21,n<m (m is a positive integer!. The next
term gives a jump in themth derivative ofV with respect to
P.

In 1964 Fisher@14# observed that for some kinds of lattic
models, the partition function can be expressed as a poly
mial. He discussed the roots of the partition function in t
complex temperature plane. He used the square lattice I
model as an example and also found that the critical natu
determined solely by the behavior of root distribution ne
the positive real root. In this example the roots are located
an unit circle in the complexx5sinh 2J/T plane, namely,
xl5exp(iul). Then the free energy is

f 5T(
l

lnS 12
x

xl
D5E

0

p

g~u!ln~x222x cosu11!du.

~20!

Fisher proved that the root distributiong(u)→uuu nearu50
gives the logarithmic singularity of the two-dimension
Ising model. For theq-state Potts model@15,16#, it was
found that in the complexx5(eJ/T21)/Aq plane, the roots
in the Rex.0 region are located on the unit circleuxu51.
As u→0, g(u)→uuu12a(q) for q<4, which gives the spe
cific heat singularityutu2a(q) ~second-order phase transition!;
and g(u)→ f (q) for q.4, which gives a first order phas
transition with latent heatf (q).
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For an ideal Bose gas, since no hard core exists, the g
partition function is an infinite power series of fugacity an
can not be expressed as a polynomial of fugacity. So we
not introduce the roots of the grand partition function. Ne
ertheless, the inverse of the grand partition function can
expressed as

J215)
k

S 12
z

exp~ek /T! D , ~21!

where the product is taken over each quantum statek. Simi-
lar to the Yang-Lee approach, we can introduce the root
J21,

zk5exp~ek /T! . ~22!

It is seen that the root distribution is determined by the
ergy spectrum. Since

2 ln J5(
k

lnS 12
z

exp~ek /T! D
→B~d!E

0

`

g~e!lnS 12
z

exp~e/T! Dde, ~23!

we identify the root distribution function with the quantu
state distribution functiong(e)5pd21(dp/de).

Since physicallym<0 and ek>0, so z<1 and zk>1.
When m50, ek50, we have the unique physical rootz
5z051, which corresponds to the singularity of the gra
partition function (J5`) and the thermodynamic potentia
From theorem 1 we know that ifg(e)→ea ase→0, then the
critical nature of ideal BEC is determined completely bya.
Therefore the critical nature of ideal BEC is determin
solely by the root distribution nearz051, namely, g(e
→0)→ea. We obtain the following conclusion.

For an ideal Bose gas, the roots of the inverse of t
grand partition function are given by zk5exp(ek /T). The sin-
gularity of thermodynamic potential is connected with t
physical root z05z51. If the root distribution function has
the behavior g(e)→ea ~a is a positive exponent) ase→0,
then the critical nature is determined completely bya. In
other words, the critical nature of ideal BEC is determine
solely by the behavior of the root distribution near the phy
cal root z051.

The situation is quite similar to that of phase transitio
described by Yang-Lee theory. It is interesting to note t
this physical rootz051 can occur in a finite system, whil
the positive real root in the Yang-Lee approach occurs in
thermodynamic limit.

We further discuss the difference between ideal BEC a
nonideal BEC. The origin of singularity of thermodynam
potential of an ideal Bose gas is quite different from that
a real interacting Bose gas. For a real interacting Bose
the pair interaction has a hard core and Yang-Lee theor
applicable. The singularity of the thermodynamic potentia
connected with the positive real root of the grand partiti
function. On the contrary, for ideal Bose gas, the singula
of the thermodynamic potential is connected with the phy
cal rootz05z51 of the inverse of the grand partition func
tion.
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From the above, we further see the following:~1! Ideal
BEC can occur in a finite system@17#. This explains why a
nearly ideal Bose atom cluster in some experiments@5,18#,
only with number of particles, say 105, that is far from
reaching the thermodynamic limit, still has ideal BEC. Wh
for a real interacting Bose gas, nonideal BEC can oc
only in the thermodynamic limit;~2! Both singularities of
thermodynamic potentials of a real interacting Bose
and a real interacting classical gas are connected
the positive real roots of their grand partition function
respectively. Therefore this explains why BEC of a re
interacting Bose gas more closely resembles an ordin
gas-liquid phase transition than the ideal BEC, as no
.
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long ago by Huang, Yang, and Luttinger@19,20#.
In conclusion, we have found that the singularity

thermodynamic potential of an ideal Bose gas is connec
with the physical rootz05z51 of the inverse of the
grand partition function. The critical nature of ideal Bos
Einstein condensation is determined solely by the
havior of the root distribution of the inverse of th
grand partition function near the physical rootz051. The
situation is quite similar to that of phase transition describ
by Yang-Lee theory, where the nature of the phase tra
tion is determined solely by the behavior of the root dist
bution of the grand partition function near the positi
real root.
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